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Results from experiments on wave interaction with a rigid vertical plate are reported.
The 5 m long plate is set against the wall of a 30 m wide basin, at 100 m from
the wavemaker. This set-up is equivalent to a 10 m plate in the middle of a 60 m
wide basin. Regular waves are produced, with wavelengths of 1.6 m, 1.8 m and 2 m,
and steepnesses H/L (H being the double amplitude and L being the wavelength)
ranging from 2 % to 5 %. Free-surface elevations along the plate are measured
with a row of 20 gauges. The focus is on the time evolution of the free-surface
profile along the plate. At all steepnesses, strong deviations from the predictions of
linear theory gradually take place as the reflected wave field develops in the basin.
This phenomenon is attributed to third-order interactions between the incoming and
reflected wave systems, on the weather side of the plate. The measured profiles along
the plate are compared with the predictions of two numerical models: an approximate
model based on the tertiary interaction theory of Longuet-Higgins & Phillips (J. Fluid
Mech., vol. 12, 1962, p. 333) for plane waves, which provides a steady-state solution,
and a fully nonlinear numerical wavetank based on extended Boussinesq equations.
In most of the experimental tests, despite the large distance from the wavemaker to
the plate and the small amplitude of the incident wave, no steady state is attained by
the end of the exploitable part of the records.

1. Introduction
Our recent work has been concerned with wave interaction with strongly reflective

structures. This has followed a series of experiments, in the same facility (CEHIPAR)
as for the tests presented here, on the roll response of barges in beam seas: very high
free-surface elevations could be observed at mid hull of the barge model, in complete
disagreement with the predictions of linear theory. Recently, similar observations
(with an oil tanker model) have been reported by Spentza & Swan (2009), in an
experimental investigation related to the Prestige disaster.

Following the barge model tests, we carried out several experimental campaigns
with simpler models in the shape of rigidly held vertical plates. First results are
reported in Molin et al. (2005b): a 1.2 m long plate was set against the wall of a
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16 m wide tank (Bassin de Génie Océanique (BGO)- First in la Seyne-sur-mer), at a
distance of about 20 m from the wavemaker. This set-up was equivalent to a 2.4 m
plate in the middle of a 32 m wide basin. The plate was subjected to regular waves
of varying periods and amplitudes, with wavelengths L ranging from 1m to 3 m, and
wave steepnesses H/L ranging from 2 % to 6 %. Very high wave elevations were
observed on the plate by the wall corner, with response amplitude operators (RAOs)
taking values up to 5, which is more than twice the values predicted by linearized
potential flow theory.

It was advocated that these phenomena are due to tertiary (third-order) interactions
between the incoming and reflected wave systems: the reflected waves ‘slow down’
the incoming waves, acting in the same way as a shoal, inducing energy focusing
effects. On the basis of the theoretical analysis of Longuet-Higgins & Phillips (1962)
for plane waves, an approximate numerical model was proposed: the space evolution
of the complex amplitude of the incoming waves, as they progress towards the
plate and interact with the reflected wave system, is described by a simple parabolic
equation. This equation is solved starting some distance ahead of the plate (e.g. the
wavemaker line), and over some width (e.g. the basin width). Incoming and reflected
wave systems are successively updated through an iterative process, until convergence
is reached. Good agreement was found between measured and calculated free-surface
profiles along the plate.

Molin et al. (2006) report another series of experiments, in the same facility,
with a longer plate (3 m) and shorter wavelengths (0.6–2 m). Experimental RAOs
of the free-surface elevation along the plate are compared with numerical results
from the parabolic model of Molin et al. (2005b), and from a fully nonlinear
numerical wavetank based on extended Boussinesq equations (Jamois et al. 2006).
The Boussinesq model closely reproduces the time evolution of the free-surface
profile along the plate. A short-coming of the experiments is that the exploitable time
window is limited, due to multiple reflections between the wavemaker and the plate.
This duration can be too short for a steady state to be reached. Another concern
is that the 20 m distance from the wavemaker to the plate may be too short for
the nonlinear interactions between the incoming and reflected waves to have fully
evolved. As a matter of fact, numerical runs with the parabolic model suggest that the
effective interaction area can be very large, especially in the case of small wavelengths
and small steepnesses. When the steepness increases and/or the wavelength over plate
length ratio decreases, the iterative scheme fails to converge, raising the question of
whether or not a steady state can ever be reached. When the iterative scheme does
converge, it may also be wondered whether the obtained solution is unique.

These questions motivated the present study, which consisted of another
experimental campaign carried out in the Ship Dynamics Laboratory of CEHIPAR
in Spain. The tank size is 150 × 30 m. The set-up was similar to the previous ones,
a vertical plate, 5 m long, protruding from the wall at a large distance from the
wavemaker. Tests were carried out in regular and irregular waves. In this paper we
report the regular wave tests only. In § 2, we briefly describe the two numerical models,
based on the parabolic approximation and the extended Boussinesq equations. More
detailed information may be found in Jamois et al. (2006) and Molin et al. (2005b).
In § 3, the experimental campaign is described and some typical results are presented.
In § 4, we first analyse the tests at the 1.01 s wave period. The time evolutions of the
free-surface RAOs, at the different gauges along the plate, are shown and compared
with the predictions of the parabolic model. The Boussinesq model is run for three
cases of the 1.13 s wave period tests, at the lowest wave steepnesses.
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Figure 1. Geometry.

2. The numerical models
2.1. The parabolic model

We refer to Molin et al. (2005b) for a detailed description. The resolution is done in
the frequency domain with the velocity potential expressed as

φ(x, y, z, t) = Re
{
ϕ(x, y, z) e−i ωt

}
, (2.1)

and harmonics at frequencies nω being discarded.
Here we use a right-handed coordinate system Oxyz with z =0 as the free surface

at rest, x =0, y =0 as the intersection between the wall and the plate (figure 1).
The velocity potential ϕ is decomposed into an incoming component ϕI and a

reflected component ϕD . The incoming component is assumed to be in the form

ϕI =
−i A(ε2x, εy) g

ω
ei k (1−ε2) x e

[
k+ε2k

(2)
1 (ε2x,εy)

]
z (2.2)

with ε as the wave steepness expressed as k AI , k as the wavenumber ω2/g and AI as
the incoming wave amplitude at infinity. For simplicity, the water depth is assumed
here to be infinite; derivations are straightforward in the finite depth case. In (2.2),
the wave amplitude A is a complex quantity, slowly varying in space due to tertiary
interactions with the reflected wave system from the plate. This reflected wave system
is locally associated with a plane wave of (real) amplitude AR and direction βR . It
can then be shown (Molin et al. 2005b) that the complex amplitude A obeys the
parabolic equation

2 i k Ax + Ayy + 2 k4
[
A2

R f (βR) + A2
I − ‖A‖2

]
A = 0 (2.3)

where, in infinite water depth (Longuet-Higgins & Phillips 1962),

f (β) = −
{

(1 − cos β)
√

2 + 2 cos β + 2 cos β

+
1

2
sin2 β +

2 (1 − cosβ)√
2 + 2 cosβ − 4

(1 + cosβ +
√

2 + 2 cos β)

}
. (2.4)

Equation (2.3) is similar with the parabolic approximation to the mild slope equation
(e.g. see Radder 1979; Dingemans 1997), with the difference that the forcing term is
not due to shoaling but to the tertiary interaction with the reflected wave field.
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To solve for the diffraction problem and obtain the locally equivalent amplitudes
AR and directions βR , advantage is taken of the geometry: the fluid domain is
decomposed into two semi-infinite domains, on either side of the plate, bounded by
the walls of the basin at y =0 and y = b (figure 1); in either sub-domain, eigenfunction
expansions are used to express the diffraction potential ϕDi (i = 1, 2) as

ϕDi =
−i Ag

ω
ekz

∞∑
n=0

Bin e±i αn x cos λny, λn = nπ/b, α2
n = k2 − λ2

n. (2.5)

The no-flow condition at the plate (x = 0, 0 � y � d, −∞ < z � 0) and matching
conditions for ϕD1 and ϕD2 on the common strip d < y � b yield the coefficients Bin,
from which AR and βR can be evaluated locally.

We first solve the diffraction problem with the incoming waves unmodified (A ≡ AI ).
Then the parabolic equation (2.3) is solved numerically starting from some distance l

(the ‘interaction length’) ahead of the plate. This provides an updated incoming wave
system at the plate from which a new diffraction problem, and then the parabolic
equation, are solved again. This procedure is repeated until some level of convergence
is reached. Note that the method used here is quite approximate, first due to the local
plane-wave idealization and second due to the fact that modifications of the reflected
waves, under their tertiary interaction with the incoming waves, are not accounted
for. However, good agreement with the experimental measurements was reported by
Molin et al. (2005b) and Molin et al. (2006).

2.2. The numerical wavetank

Details are given by Jamois (2005) or Jamois et al. (2006). We use the nonlinear
free-surface equations in Zakharov form (Zakharov 1968):

ηt = −∇η · ∇φ̃ + w̃(1 + ∇η · ∇η), (2.6)

φ̃t = −gη − 1
2
(∇φ̃ · ∇φ̃) + 1

2
w̃2(1 + ∇η · ∇η) (2.7)

with η(x, y, t) as the free-surface elevation and φ̃(x, y, t) ≡ φ(x, y, η(x, y, t), t) as the
velocity potential at the free surface. Similarly, w̃ is the vertical fluid velocity at the
free surface, while ∇ is the horizontal gradient (∂/∂x, ∂/∂y).

To advance η and φ̃ in time, the vertical velocity w̃ is required. This is obtained by
expressing the velocity potential φ and vertical velocity w as polynomials in z:

φ(x, y, z, t) ≈ (1 − α2∇2)φ̂∗ + ((z − ẑ) − β3∇2)ŵ∗, (2.8)

w(x, y, z, t) ≈ (1 − α2∇2)ŵ∗ − ((z − ẑ)∇2 − β3∇4)φ̂∗, (2.9)

with

α2 ≡ 1
2
(z − ẑ)2 − 1

10
ẑ2, β3 ≡ 1

6
(z − ẑ)3 − 1

10
ẑ2(z − ẑ). (2.10)

Equations (2.8) and (2.9) are Padé-enhanced Taylor expansions from a reference level
ẑ, usually taken at mid-depth −h/2. The boundary condition at the bottom and
(2.8) at the free surface yield a linear system in (φ̂∗, ŵ∗) whose resolution provides
w and permits to advance in time. This system of equations allows us to propagate
waves over slowly varying bathymetries, while properly accounting for nonlinearity
and dispersion up to a non-dimensional water depth kh equal to 10 (Jamois et al.
2006). This is the constant depth form of the lowest-order model derived by Bingham,
Madsen & Fuhrman (2009), which is based on earlier velocity formulations (e.g.
Fuhrman & Bingham 2004).

The incoming regular waves are gradually input, over a wavelength, at the fore end
of the numerical domain from a streamfunction solution (Fenton 1988). Reflected
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Figure 2. The plate in the basin, during tests in regular waves of 1.13 s period and 4 %
steepness (note the high free-surface elevation in the wall–plate corner).

waves from the plate are absorbed at the far and fore ends, while they reflect on the
lateral wall, as in the physical tank. More details, like the technique used to ensure
the no-flow condition on the plate, can be found in the quoted references.

3. The experimental campaign
The experiments took place in the Ship Dynamics Laboratory of CEHIPAR (Canal

de Experiencias HIdrodinamicas del PARdo), as part of the HYDRALAB III network
project. The tank size is 150 × 30 × 5 m. It is equipped with a segmented wavemaker
and a computerized planar motion carriage. The plate model was of size 5 × 2.33 m,
of which 2 m were submerged. It was made of wood, with steel and fiberglass stiffening
to prevent any deformation. Twenty resistive wave gauges were set along the plate,
every 25 cm with the first one 12.5 cm from the edge (see figure 2). Another gauge was
installed 4.87 m away from the plate, at the same distance from the wavemaker, and a
last gauge at the lee side of the plate, 2.53 m from the wall and 31.5 cm from the plate.

The specified wave cases included regular and long-crested irregular waves. In this
paper, we only consider the regular wave cases. Results from the tests in irregular
waves will be reported in a subsequent paper.

Waves were calibrated prior to installing the plate, with gauges every 25 m from
the wavemaker all the way to the beach. This allowed us to check the occurrence
of Benjamin-Feir instability and to select the plate position accordingly. In the tests
reported below at 1.01 and 1.13 s wave periods, the plate was located 100 m away
from the wavemaker except for the larger steepness cases. The specified wave periods
were 1.01 s, 1.07 s and 1.13 s, that is, according to linear theory, wavelengths of 1.6 m,
1.8 m and 2 m. The specified steepnesses H/L ranged from 2 % up to 5 %, with a
0.5 % spacing.
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Figure 3. Wave period 1.13 s. Steepness H/L = 3.5%. Time evolutions of the measured free-
surface elevations RAOs at every other gauge from arrival of the wavefront (duplicated test).

Time series of the free-surface elevations as measured at the wave gauges were
processed by Fourier analysis over sliding windows, three wave periods long. In this
way, time evolutions of the RAOs are obtained.

As an illustration, we consider the case with a wave period of 1.13 s, a steepness
H/L of 3.5 %, and the plate at 100 m from the wavemaker. This test was run twice.
Figure 3 shows the time evolutions of the RAOs of the free-surface elevations at
every other gauge along the plate, from near the edge (gauge 2) to the wall (gauge
20). The wavemaker was activated for about 330 s. On the plots, t = 0 corresponds
roughly to the arrival of the wavefront. Because the waves travel a long distance,
even though their steepness is rather low, the wavefront becomes very steep and
modulated, hence the peaks that appear in the plots at t ∼ 0 s. Similar peaks can be
seen after t ∼ 200 s, they are due to multiple reflections between the plate, wavemaker
and sidewalls. According to linear theory, the group velocity is 0.88 m s−1, meaning
a time window of about 220 s (the distance to the wavemaker was actually 97 m, not
100 m) before re-reflected waves come into play. The plots indicate that disturbances
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Figure 4. Wave period 1.13 s. Steepness H/L =3.5 %. Free-surface RAOs along the plate at
different instants.

occur somewhat earlier. The importance of reflections can also be seen from the
plots at t > 330 s: even though the wavemaker was turned off more than 100 s earlier,
a strong free-surface motion persists for a long time. Thus, the exploitable part of
the time series is only the first 200–220 s.

Considering that part of the plots in figure 3, it can first be observed that the
time evolutions of the RAOs, as derived from the two tests, are not identical.
Presumably this is due to the basin not being perfectly quiet at the beginning of the
tests: although more than 30 min were spent between consecutive tests, there always
remained some disturbances in the basin. Another feature is that the time evolutions
are not monotonic: the plots exhibit oscillations. It does not appear that a steady
state has been attained by the end of the 200 s time window. Only the last gauges
by the wall have apparently reached some kind of plateau. Very high values of the
RAOs are attained there, up to 4. High free-surface elevations are also observed by
the plate edge, while in between very low RAO values are obtained.

Figure 4 shows the same results in a different way, that is the RAOs along the
plate at different instants, just after the arrival of the wavefront until just before
re-reflections come into play. Over the last three instants (t = 138.74, 160.08, 181.31 s),
the shapes vary little, and the two tests are in fair agreement. The time evolution of the
wave envelope profile, along the plate, is striking. As will be shown later, it is only over
the first instants (t =11.25 s in figure 4) that it agrees with the predictions of linear
theory. Quite noticeable is the trough that gradually appears at about mid-distance
from the edge (y = 5 m) to the wall (y = 0 m), and the high RAO values that are
finally obtained at the wall, around 4, that is about twice the value predicted by the
linear theory.
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Figure 5. Wave period 1.01 s. Steepness H/L = 2 %. Time evolutions of the measured
free-surface elevations RAOs at every other gauge from arrival of the wavefront.

4. Analysis of the results from the experiments and comparisons
with computations

We will concentrate on the tests performed at the two wave periods of 1.01 s
and 1.13 s, with the plate located at 100 m from the wavemaker. The associated
wavelengths, according to linear theory, are 1.6 m and 2m. This means, respectively,
6.25 and 5 wavelengths along the plate plus mirror plate, and distances of 62.5 and
50 wavelengths from the wavemaker to the plate. The Boussinesq model was run
only in the 1.13 s case, which is already quite demanding on computer resources. The
parabolic model was run at both wave periods.

4.1. Regular wave tests at 1.01 s period

At this wave period, the group velocity, according to linear theory, is 0.79 m s−1, that
is a time window of about 250 s before re-reflections come into play.

Figure 5 shows the time evolution of the RAOs of the free-surface elevations at
every other gauge along the plate, at the 2 % wave steepness. The evolution is rather
slow but the RAO values have changed dramatically after 200 s. From then on, due to
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Figure 6. Wave period 1.01 s. Steepness H/L = 3.5 %. Time evolutions of measured the
free-surface elevations RAOs at every other gauge from arrival of the wavefront.

the re-reflections, some oscillations start appearing. From the plots, it is not obvious
that a steady state has been reached at this stage.

Figure 6 shows the same signals for the 3.5 % wave steepness. As compared with
the previous case, the time evolution is faster and quite oscillatory. Re-reflections
come into play a little bit earlier (the group velocity increases with the steepness).
Obviously, no steady state has been reached after 200 s, and it does not look like the
oscillations are finally going to damp out. Note the strong similarity of these plots
with those shown in figure 3, at the same wave steepness of 3.5 % but at a different
wave period: the observed phenomena are not that sensitive to the precise value of
the wavelength as compared to the plate or basin widths. This excludes mechanisms
based on spurious resonant phenomena taking place in the basin, due to particular
combinations of geometric parameters.

Back to the 2 % steepness case, figure 7 shows, at different time instants ranging
from arrival of the wavefront to occurrence of re-reflections, the free-surface RAO
along the plate, compared with the predictions of linear theory and our parabolic
model. The agreement with the linear prediction is rather good at the first two or



372 B. Molin, O. Kimmoun, Y. Liu, F. Remy and H. B. Bingham

1 2 3 4 50

1

2

3

4

5
Time = 10.06 s

a/
a 0

1 2 3 4 50

1

2

3

4

5
Time = 38.36 s

1 2 3 4 50

1

2

3

4

5
Time = 66.56 s

1 2 3 4 50

1

2

3

4

5
Time = 94.76 s

a/
a 0

1 2 3 4 50

1

2

3

4

5
Time = 122.96 s

1 2 3 4 50

1

2

3

4

5
Time = 151.26 s

1 2 3 4 50

1

2

3

4

5
Time = 179.46 s

a/
a 0

1 2 3 4 50

1

2

3

4

5
Time = 207.66 s

1 2 3 4 50

1

2

3

4

5
Time = 235.96 s

y (m) y (m) y (m)

Figure 7. Wave period 1.01 s. Steepness H/L = 2 %. Time evolution of the free-surface
elevation RAO along the plate from experiments (�), linear theory (solid line) and the
parabolic model (dashed line).

three instants. By the last instant shown, the match between the experimental RAO
and the parabolic model is quite remarkable (given the approximations inherent to
the numerical model); it does look like the parabolic model provides the steady state
solution that would be finally attained.

It is somewhat surprising that such nonlinear modifications of the wave profile
along the plate are obtained at such a low wave steepness. In Molin et al. (2005b),
nothing nonlinear could be seen at the 2 % steepness. Obviously, this is due to both
the plate being much longer (relative to the wavelength) and the distance from the
wavemaker to the plate being much larger.

To illustrate the effect of the interaction length, figure 8 shows the calculated
RAOs along the plate, with the parabolic model, for interaction lengths ranging from
15 m to 200 m, that is from 9 to 125 wavelengths. The sensitivity of the RAOs to
the interaction length is quite strong, and 100 m seems to be still too short for the
full development of the nonlinear interactions between incoming and reflected wave
fields. Note that these calculations have been done by keeping a constant width of
the domain, equal to 30 m. They do not precisely reflect what would occur in open
sea conditions because here the reflected wave energy remains confined to the tank
walls.

Figures 9–12 are replicates of figure 7 for the other wave steepnesses of 2.5 %,
3%, 3.5 % and 4 %. In the 4 % case, the plate had been moved 25 m closer to the
wavemaker, due to the appearance of the Benjamin–Feir instability. In all figures
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parabolic model (dashed line).
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Figure 10. Wave period 1.01 s. Steepness H/L = 3 %. Time evolution of the free-surface
elevation RAO along the plate from experiments (�), linear theory (solid line) and the
parabolic model (dashed line).

except figure 12 (where convergence could not be reached) the profile given by the
parabolic model is shown.

At the 2.5 % steepness, the experimental RAOs are rather close to the prediction of
the parabolic model, from t ∼ 150 s, with some oscillatory behaviour. The oscillatory
behaviour is stronger at the 3 % steepness, with experimental peaks markedly larger
than predicted by the parabolic model by the plate edge. At the 3.5 % steepness,
the experimental RAOs are only qualitatively like the prediction of the parabolic
model. At the first instant the measured RAOs are far above the linear prediction:
this is due to the strong modulation of the wavefront and due to the measured wave
amplitude during the calibration tests that is used to calculate the RAO (better visual
agreement would be obtained by using the instantaneous amplitude as measured by
the wave gauge away from the plate). Finally, at 4%, even though the distance from
the wavemaker to the plate has been decreased by 25 m, the experimental RAOs take
on a chaotic appearance, with successive profiles quite different from the others. As
discussed above, the iterative scheme implemented within the parabolic model failed
to converge in that case, no matter how much relaxation was introduced, suggesting
that no steady state can exist.

Finally, figure 13 gathers the free-surface RAOs along the plate, as obtained by the
parabolic model, for the different wave steepnesses. It can be observed that the trough
moves closer to the wall as the steepness increases. Correspondingly, the height of the
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Figure 11. Wave period 1.01 s. Steepness H/L = 3.5 %. Time evolution of the free-surface
elevation RAO along the plate, from experiments (�), linear theory (solid line) and the
parabolic model (dashed line).

peak by the plate edge increases, while the height of the peak at the wall decreases.
These features are well reproduced in the experiments.

4.2. Regular wave tests at 1.13 s period

In this section, we present some results from the tests performed in regular waves
with a period of 1.13 s, meaning, according to linear theory, a wavelength of 2 m. The
plate width over the wavelength ratio is the same as in the previous BGO-First tests
(Molin et al. 2006) at the wave period of 0.88 s. The same numbers and positions
(relative to the plate width) of wave gauges along the plates were used in both series
of experiments.

4.2.1. Comparison with the BGO-First model test results

First, we show some comparative results of the two model tests. As observed above,
the plate width over wavelength ratio is the same in both experiments (equal to
2.5), but the other geometric parameters are different: relative to the wavelength, the
distance from wavemaker to plate is about 3 times larger in CEHIPAR, while the
basin width is almost identical (12.5 % larger).

In figures 14, 15 and 16, we compare the time histories of the free-surface RAOs at
every other gauge along the plates for the 2 %, 3 % and 4 % steepnesses, respectively.
The time on the horizontal scale has been made non-dimensional by dividing it by the
wave period. In the BGO-First experiments, re-reflections occur very quickly, after
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Figure 12. Wave period 1.01 s. Steepness H/L = 4 %. Time evolution of the free-surface
elevation RAO along the plate from experiments (�) and linear theory (solid line). Plate
moved at 75m from the wavemaker.
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Figure 14. Wave period 1.13 s. Steepness H/L = 2 %. Time evolutions of the measured
free-surface elevations RAOs at every other gauge from arrival of the wavefront. The solid
line denotes CEHIPAR experiments and the dashed line denotes BGO-First experiments.
(Horizontal scale is non-dimensional time t/T , T being the wave period.)

about 60 wave periods. In the CEHIPAR experiments, they occur after about 180
cycles.

At 2 % steepness (figure 14), the RAO time histories are nearly identical until
the BGO-First ones get affected by re-reflections. The slight differences appearing at
gauges 12 or 14 are presumably due to gauge calibration problems. As for gauge 2,
the discrepancies may also be attributed to the different thicknesses of the two plates
(1 cm at CEHIPAR, 5 cm at BGO-First). Other causes of discrepancies are that the
wave steepnesses are not rigourously the same, and that the shapes of the wave fronts
are different: because the waves travel a much longer distance in CEHIPAR before
reaching the plate, more dispersive and nonlinear effects develop. This is probably
the main reason for the comparatively larger differences that can be seen in figure 15,
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Figure 15. Wave period 1.13 s. Steepness H/L = 3 %. Time evolutions of the measured
free-surface elevations RAOs at every other gauge from arrival of the wavefront. The solid
line denotes CEHIPAR experiments and the dashed line denotes BGO-First experiments.
(Horizontal scale is non-dimensional time t/T , T being the wave period.)

at the 3% wave steepness, and, even more pronounced, in figure 16 at 4 % steepness.
This last case was run twice, both at CEHIPAR and BGO-First; it can be seen
from the figure that the repeatability is poor, actually poorer in BGO-First than at
CEHIPAR. Most presumably, as argued about figures 3 and 4, this is due to the
basins not being perfectly quiet at the start of the tests. The sensitivity of the RAO
histories to the initial conditions seems to increase as the wave steepness becomes
larger.

4.2.2. Comparisons with the Boussinesq model

The experimental wavetank at CEHIPAR was exactly reproduced in the
computations, except that the part on the lee side of the plate was shortened,
with the numerical damping zone starting 3 m from the plate and extending over
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Figure 16. Wave period 1.13 s. Steepness H/L = 4 %. Time evolutions of the measured
free-surface elevations RAOs at every other gauge from arrival of the wavefront. The solid
line denotes CEHIPAR experiments and the dashed line denotes BGO-First experiments.
(Horizontal scale is non-dimensional time t/T , T being the wave period.)

5 wavelengths. This means that the numerical domain had 56.5 wavelengths in
the longitudinal direction and 15 wavelengths in the transverse direction. Twenty
calculation points were taken per wavelength, that is 339 000 discretization points
altogether, meaning 778 000 unknowns. It can be remarked here that twenty points
per wavelength is too coarse to capture all nonlinear effects, for instance the second-
order free waves at the double frequency 2ω are not properly reproduced (see Molin
et al. 2005a). Refining the discretization would be computationally prohibitive, given
the size of the domain. Fortunately, in deep water, these second-order free waves do
not participate in the tertiary interaction effect that is the key to the phenomenon
under study. The water depth was reduced so that kh takes the value of 5. The time
step was taken equal to one-twentieth of the wave period.
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Figure 17. Wave period 1.13 s. Steepness H/L = 2 %. Time evolutions of the free-surface
elevations RAOs at every other gauge from measurements (solid line) and the Boussinesq
model (dashed line).

In the numerical wavetank, the incoming waves are gradually input over the first
wavelength, from Fenton’s streamfunction model (Fenton 1988). This generation zone
is followed by a relaxation zone, 2 wavelengths long, where reflected waves by the
plate are selectively damped out, unlike in the physical tank where they get re-
reflected by the wavemaker. This permits us to continue the numerical simulation
indefinitely and to check whether a steady state can be reached. The drawback is that
these computations are quite demanding on computer resources: just to propagate the
incoming waves from the wavemaker to the plate (a bit less than 2 min at CEHIPAR)
takes 17 h on a 2.66 GHz double CPU workstation.

In the numerical model, the plate is thickened to the same value as the discretization
step, that is 10 cm. The potential flow being singular at the two square corners, to
avoid explicit calculations there, the plate walls are located half-way between grid
points. Still the corner areas are prone to numerical instabilities and this is remedied
by applying local filtering, which has the slight drawback of dissipating some energy.
(Physically the flow locally separates at the square edges and this is a source of energy
dissipation as well.)

Figure 17 shows the time evolution of the free-surface RAOs at every other gauge
along the plate, as derived from measurements and as derived from the Boussinesq
model, in the 2 % steepness case. The experimental and numerical time series were
processed in the same way, i.e. Fourier analysis over sliding time window, three wave
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Figure 18. Wave period 1.13 s. Steepness H/L = 2 %. Free-surface RAOs along the plate
from linear theory and the parabolic and Boussinesq models.

periods long. The numerical simulation has been pursued over more than 500 s after
arrival of the wavefront. It can be seen that the two sets of curves are in fair agreement
until the arrival of re-reflections in the experiments. Because of the selective damping
zone, the numerical traces are not affected by this problem. Visually, it does look like
the numerical RAOs stabilize in time and that a steady state is reached.

Figure 18 shows the free-surface RAO along the plate, obtained at the end of the
Boussinesq simulation, compared with the parabolic model and with linear theory.
The Boussinesq model, as compared to the parabolic one, underpredicts the height of
the peak by the plate edge. This underestimation is presumably due to the numerical
filtering that is applied by the plate edge. There are also discrepancies on the position
and depth of the trough that appears at about 3 m from the wall. The remaining
parts of the curves, from the wall to the trough are in fair agreement.

Figures 19 and 20 are replicates of figures 17 and 18 in the 2.5 % steepness case,
while figures 21 and 22 show the 3 % steepness case. As the steepness increases,
the discrepancies between the experimental and numerical time evolutions become
larger. The reasons for these differences are, first, the experimental wave steepness, as
derived from the calibration tests, which is known within some uncertainty margin,
is estimated to be ±5 %. Second, as the wave steepness increases, the numerical
wavefront, as it reaches the plate, increasingly differs from the experimental one,
probably because the spatial and temporal discretizations are too coarse to capture
all nonlinear effects that affect its evolution as it travels from the wavemaker to
the plate. Finally, the sensitivity of the time evolution to the initial conditions gets
larger as the wave steepness increases. In both steepness cases, the Boussinesq model
predicts a steady state, with the transients lasting longer in the higher steepness case.
Quite noticeable is the almost perfect node predicted by the parabolic model at the
3 % steepness (figure 22): it is somewhat unexpected that there can be, on the weather
side of the plate, a location where the free-surface motion is nearly nil.
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Figure 19. Wave period 1.13 s. Steepness H/L = 2.5 %. Time evolutions of the free-surface
elevations RAOs at every other gauge from measurements (solid line) and the Boussinesq
model (dashed line).
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Figure 20. Wave period 1.13 s. Steepness H/L = 2.5 %. Free-surface RAOs along the plate
from linear theory and the parabolic and Boussinesq models.
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Figure 21. Wave period 1.13 s. Steepness H/L = 3 %. Time evolutions of the free-surface
elevations RAOs at every other gauge from measurements (solid line) and the Boussinesq
model (dashed line).

Finally, figure 23 shows a bird’s eye view of the numerical basin in the 3 % steepness
case.

Unfortunately, no numerical results can be shown at higher steepnesses because the
numerical simulations break down after some time. This is attributed to the numerical
waves becoming locally too steep. (Presumably, some wave breaking took place in
the physical tank.) So the question whether steady states are attained at high wave
steepnesses (where the iterative scheme implemented in the parabolic model fails to
converge) is still open.

5. Final comments
The model test results and the comparisons made with the two numerical models

confirm the original analysis given by Molin et al. (2005b): the time evolutions of
the free-surface profiles along the plate are due to third-order interactions between
the incident and reflected wave systems. The reflected waves slow down the incoming
waves, with the same effect as a shoal; but it is a shoal that evolves in time as
the reflected wave system progresses in the tank and as the incoming wave system
undergoes modifications.

In Molin et al. (2005b), the plate was much shorter (1.2 m for wavelengths in
the range 1.2–3 m); at low wave steepnesses (H/L ∼ 2 %–3 %) hardly any nonlinear
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Figure 22. Wave period 1.13 s. Steepness H/L = 3 %. Free-surface RAOs along the plate
from linear theory and the parabolic and Boussinesq models.

Figure 23. Wave period 1.13 s. Steepness H/L = 3 %. Three-dimensional view.

effect could be seen, transients were relatively short and the size of the interaction
area, as predicted by the parabolic model, was a few wavelengths. In this new series
of experiments, with a 5 m plate and wavelengths from 1.6 m to 2 m, conspicuous
nonlinear evolution is observed at all wave steepnesses from H/L = 2 %, transients
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seem to last for ever with no evidence of a steady state being attainable and the
interaction area extends over more than 50 wavelengths: the CEHIPAR tank is still too
small. The implications of these findings for model testing of long partially reflective
structures, such as are being studied in coastal and port engineering (breakwaters,
etc.), are tremendous. The numerical runs with the Boussinesq model suggest that the
use of an actively controlled, absorbing wavemaker is strongly encouraged, but still
this does not guarantee that the area from the wavemaker to the considered structure
is of sufficient size to fully capture the nonlinear interaction between the incoming
and reflected wave systems.

The Boussinesq model of Jamois (2005) turned out to perform remarkably well
at the low wave steepnesses. Still, it can be improved in many ways. For instance
less dissipative schemes can be derived for the treatment of exterior corners. We are
also working on implementing local energy absorption mimicking the effect of wave
breaking, that would allow to run the high wave steepness cases, and on simulating
irregular wave systems. We are planning to report on these issues soon.
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